Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Respir Care ; 67(3): 375-376, 2022 03.
Article in English | MEDLINE | ID: covidwho-1744784
2.
Front Physiol ; 12: 678540, 2021.
Article in English | MEDLINE | ID: covidwho-1305670

ABSTRACT

Analysis of pulmonary function tests (PFTs) is an area where machine learning (ML) may benefit clinicians, researchers, and the patients. PFT measures spirometry, lung volumes, and carbon monoxide diffusion capacity of the lung (DLCO). The results are usually interpreted by the clinicians using discrete numeric data according to published guidelines. PFT interpretations by clinicians, however, are known to have inter-rater variability and the inaccuracy can impact patient care. This variability may be caused by unfamiliarity of the guidelines, lack of training, inadequate understanding of lung physiology, or simply mental lapses. A rules-based automated interpretation system can recapitulate expert's pattern recognition capability and decrease errors. ML can also be used to analyze continuous data or the graphics, including the flow-volume loop, the DLCO and the nitrogen washout curves. These analyses can discover novel physiological biomarkers. In the era of wearables and telehealth, particularly with the COVID-19 pandemic restricting PFTs to be done in the clinical laboratories, ML can also be used to combine mobile spirometry results with an individual's clinical profile to deliver precision medicine. There are, however, hurdles in the development and commercialization of the ML-assisted PFT interpretation programs, including the need for high quality representative data, the existence of different formats for data acquisition and sharing in PFT software by different vendors, and the need for collaboration amongst clinicians, biomedical engineers, and information technologists. Hurdles notwithstanding, the new developments would represent significant advances that could be the future of PFT, the oldest test still in use in clinical medicine.

4.
Ann Am Thorac Soc ; 17(11): 1343-1351, 2020 11.
Article in English | MEDLINE | ID: covidwho-922719

ABSTRACT

Background: In March 2020, many elective medical services were canceled in response to the coronavirus disease 2019 (COVID-19) pandemic. The daily case rate is now declining in many states and there is a need for guidance about the resumption of elective clinical services for patients with lung disease or sleep conditions.Methods: Volunteers were solicited from the Association of Pulmonary, Critical Care, and Sleep Division Directors and American Thoracic Society. Working groups developed plans by discussion and consensus for resuming elective services in pulmonary and sleep-medicine clinics, pulmonary function testing laboratories, bronchoscopy and procedure suites, polysomnography laboratories, and pulmonary rehabilitation facilities.Results: The community new case rate should be consistently low or have a downward trajectory for at least 14 days before resuming elective clinical services. In addition, institutions should have an operational strategy that consists of patient prioritization, screening, diagnostic testing, physical distancing, infection control, and follow-up surveillance. The goals are to protect patients and staff from exposure to the virus, account for limitations in staff, equipment, and space that are essential for the care of patients with COVID-19, and provide access to care for patients with acute and chronic conditions.Conclusions: Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a dynamic process and, therefore, it is likely that the prevalence of COVID-19 in the community will wax and wane. This will impact an institution's mitigation needs. Operating procedures should be frequently reassessed and modified as needed. The suggestions provided are those of the authors and do not represent official positions of the Association of Pulmonary, Critical Care, and Sleep Division Directors or the American Thoracic Society.


Subject(s)
Coronavirus Infections/prevention & control , Critical Care , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pulmonary Medicine , Sleep , Advisory Committees , Betacoronavirus , COVID-19 , Consensus , Coronavirus Infections/diagnosis , Humans , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Societies, Medical , United States
SELECTION OF CITATIONS
SEARCH DETAIL